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1. Introduction

In this paper, a new contact-impact procedure called the pinball algorithm is descnibed, for
previous studies of contact-impact see [1-4]. A short description of pinball was previously given
by Belytschko and Neal[5). The thrust of the pinball algorithm is to allow vectorization of as
much of the slideline calculations as possible. This is accomplished by greatly simplifying both
the search for the elements involved in the impact and in the enforcement of impenetrability with:
the use of spheres, or pinballs, for each element in the slideline calculations. In this way, the
search requires a simple check on the distances between pinballs to determine interpenetration.
Once the contacting pairs of pinballs have been determined, the impenetrability condition is
enforced with the use of a penalty formulation which can be completely vectorized. A similar idea
has also been used in the two-dimensional NABOR algorithm[6], but the NABOR method used an
ad hoc method based on spheres for the determination of stresses in the continua and did not use a
representation of the surface normal. In the pinball algorithm the element spheres are used only in
the contact algorithm, while standard continuum mechanics is used for the continuum elements.

2. Variational Inequality and Discrete Interpolants

The weak form of the contact problem is obtained from the principle of virtual work by

appending the Lagrange multiplier type term & (A g). We consider the trial functions to be
kinematically admissible functions v, sov; € Vand A € A where

V = {vi:vie Co(QA U QB), vi=v’i"on r;} (2.1a)

1

A= {r:2e ci(R),r<0} (2.1b)

As indicated above, these functions need only be piecewise continuous and satisfy essential
boundary conditions. The variations (or test functions) dv; € \, dA € A j where

\, = {6vi :dv; € C°, dv;=0on l"‘,i} (2.2a)
Ay = {8r:8re C,6A<00n T} (2.2b)
SW = SWint 4+ §M - Swext (2.3)
(see Belytschko [7]) where
SWim = I Sv(i,j)cij dQ (24)
Q
SWert = Iﬁvibi dQ + ISva *dr (2.5)

Q r
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M = fsvips‘/i dQ (2.6)
Q

where the density is denoted by p, the body force by b;, the surface tractions by ‘E’i", and the

Lagrange multipliers by A. The stress state is described by the Cauchy (physical) stress Cj;-
The weak form for the contact problem is then given by :

Ifve V,A€ A and

W+ fsa'g) dlr 2 0 2.7
I

for all 8v € V,, dA € A, then the momentum equation, traction boundary conditions and

contact surface inequalities are satisfied. The equivalence of this weak form to the governing
partial differential equations is demonstrated in [5].

3. Pinball Algorithm

The main idea of the pinball algorithm is to enforce the impenetrability condition and
contact conditions on a set of spheres, or pinballs which are embedded in the finite elements. By
enforcing the contact constraint on the spheres rather than the elements themselves, the time
required by the contact algorithm can be greatly reduced because: (1) the determination of whether
interpenetration has occurred becomes a simple check of the distance between two pinballs, (2)
when combined with a penalty method, it involves almost no recursive calculations or conditional
statements, so it is much more amenable to vectorization.

The hexahedral elements used in this formulation are described in detail by Flanagan and
Belytschko[13]. A sphere, or pinball, is embedded in each of these hexahedral elements of the
mesh. These pinballs will then be used to determine which elements are involved in the contact.
The center and radii of the sphere are given in element e by

C = élz.l X, (3.1)
= (S

R = [ (3.2)
an

respectively, where C; are the coordinates of the center of the sphere, x§; are the coordinates of

node I of element e, R is radius of the pinball, and V€ is the volume of element e.

The center of each sphere is simply the average of its nodal coordinates while the radius is
determined by setting the volume of the resulting sphere equal to the volume of the element itself.
For materials with substantial compressibility the radius for each element would have to be
recalculated every few steps.

The detection of the impacting pairs is, computationally, a very simple procedure. The
distance between the centers of each slave pinball and each master pinball is calculated and then
compared with the sum of the radii of the two elements. Interpenetration has occurred when

d < Ri +R] (33)

ij




where d;; is the distance between the centers of elements 1 and 2 and R:. R; are the radii of

elementsiand j. Note that in this procedure the masters and the slaves may be penetrated by more
than one element during a time step.

In a penalty of velocity projection formulation, where forces are added 1o each node
involved in contact, contact of one element with several other elements does not impair the
algorithm. On the other hand, in the displacement projection form of the Lagrange multiplier
method[4], since the nodes are moved, difficulties arise when a single element comes into contact
with several other eiements because nodes are displaced in the contact algorithm. This difficulty is
illustrated in figures 1. In figure la element 1 contacts two other elements 2 and 3. If a
displacement-based slideline algorithm is used, element 1 would first be moved so that it does noi
penetrate element 2 as in figure 1b, and then it would be moved again as shown in figure 1c so as
not to penetrate element 3. During this second adjustment element 1 may again penetrate element 2
and this penetration would go undetected. This problem is especially troublesome in vectorized
algorithms. Since the adjustment of position is a recursive operation, the first adjustment would
not take place at all.

The penalty force is proportional to the depth of penetration between the two elements;
therefore the next step of the procedure is to determine the penetration depth of the two elements.
In the pinball algorithm, the penetration is easily calculated. Consider two interpenetrating
pinballs, 1 and 2, in figure 2, with the velocities v, and v,; the normal of the associated surfaces
are n; and ny. The pesition vectors of the centers of the two pinballs are given by C, and C,.
The penetration is given by g and is defined as the relative displacement of the centers of ihe
pinballs in the average norma! direction needed to eliminate interpenetration, so that the following
equation determines g

IC,-Co+gnl?= (R; +R,)? (3.4)

and the normals of the two elements are given by

n = 3(ny-m) (3.5)
This gives

g=-b+Vb%-c (3.6
where

b = n;(x; - Cy)

~ njn
X;X; + Cp;Cy; - 2x;Cy; - (R; + Ry)?2
c = iXi 2i-2i njx;-, 2i ( 1 2) (3.7)

Note that only the positive sign on the radical in (6) need be considered; the negative root
corresponds to a negative value of g which is irrelevant.

The penalty force which will be applied to the nodes of each element is proportional to the
penetration depth and is given by

FP = (pl'g + p,g)n (3.8)
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An expression for the parameter, p,, has been proposed for the case of a node impacting the
surface of an element and the volume, area and bulk modulus referred to the impacted element[16]

B A2
P = SR | (3.9

where B, A, and V are the bulk modulus, area of the impacted surface, and volume of the element,

FF is the penalty force on the pinball.
The rate of penetration is computed by

8
g = %Z(V% -vl)en (3.10)

In the present context, the properties of two pinballs must be considered, so the penalty parameter
will be given by

P2 =%f3(31 R; + B3R,) (3.11)

where Bi, B, are the bulk moduli of the impacting pinballs, and R;, R, are the radii of the
impacting pinballs. Equation (9) gives the contact force that will be applied in opposite directions
to each of the two impacting pinballs. This force is then divided among the eight nodes of each
element.

p_1
Fu= g n=18 (3.12)

where Felf are the element level penalty force on local node n of the element. These forces are then

assemb31c~:d to the global force vector as usual. A flowchart of the impact algorithm is given in
figure 3.

The penalty force is divided among the eight nodes of the hexahedron to preserve the
symmetry of the underlying linearized system. Since the position of the pinball depends on the
eight nodes of the hexahedron, the linearized equations would not be symmetric if the force were
subdivided only among the surface nodes; an alternative algorithm where C depends only on the
surface node velocities and hence the penalty forces are distributed only to the surface nodes is
now under investigation, Belytschko and Bindeman([17].

The penalty forces, along with the forces arising from element stresses and externally
applied loads, are used in the calculation of the nodal accelerations. Therefore the contact routine
appears in the algorithm immediately before the nodal accelerations are calculated. The flowchart
of the complete explicit algorithm with the contact algorithm are given in figure 4.

4. Numerical Examples

In order to test the accuracy and efficiency of the proposed contact procedure several
example problems were examined. The first problem considered was the impact of two one-
dimensional bars consisting of ten elements each. This problem was performed in order to
compare two different methods of enforcing the impenetrability constraint: the penalty method and
the projection method. This contact constraint is the only nonlinearity that appears in the problem.
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As can be seen in figure S one of the bars is given an initial velocity so that it impacts with the
second bar. The material properties are such that the wave speed in the two bars is 10.0 my/s.

Figure 6 through 8 give the velocity time histories for the nodes at the midpoint of the first
rod (x=5.0), at the interface on the first rod (x=10.0), and at the midpoint of the second rod
(x=15.5). As can be seen from figure 7, the penalty method gives a rather noisy solution at the
contact interface yet this does not appear to have much affect away from the contact zone (see

figures 6 and 8). The results for the Lagrange multiplier method were nearly identical to the
projection method and therefore were not included in the results.

The second problem considered was of a copper rod impacting a steel plate at high
velocity. The rod, acting as the projectile, consisted of 414 elements while the plate or target was
made up of 1,428 elements. The geometry and the material properties for each of the objects is
given in table 1. The evolution of the problem is shown in figure 9. In this example problem and
the one that follows a Von Mises yield criteria is used with a piece-wise linear stress-strain model.
Once the effective stress reaches yield the material undergoes isotropic hardening until the effective
stress is equal to the ultimate stress, at which point the material is considered perfectly plastic.
When the effective strain of an element reaches the maximum allowable effective strain, the
element is eroded, that is the stress in the element is considered zero from that time on. The
maximum allowable effective strain used for steel is 1.0 while that used for copper is 2.0.

This problem was also examined by Belytschko and Lin[4] with their projection method
and a comparison of running times for both the methods is given in the first column of table 2. As
can be seen from this table, the efficiency of the new algorithm is substantially better than the
previous one on a vectorized machine. For this comparison, both algorithms were implemented
into the three dimensional finite element code WHAMS3D and run on a Cray X-MP/14 with the
CFT77 compiler. The differences shown in running times is due only to the different slideline
algorithms used.

The importance of vectorization for both of these slideline algorithms is demonstrated
graphically in figures 10 and 11. In these figures a breakdown of the total CPU is given for each
part of the program for both vectorized and unvectorized compilers. (The unvectorized runs were
performed on the same machine using the CFT77 compiler with the vectorization turned off.) For
unvectorized runs, the new algorithm is only marginally more efficient than the previous method.
When the vectorized compiler is used, however, the old version of the slideline algorithm
consumes nearly fifty percent of the total CPU, the new procedure this value has been reduced to
only fifteen percent for the vectorized run.

The impact of an elastic sphere with a rigid wall was examined to test the accuracy of the
new algorithm. Ten degrees of the sphere are modelled with 499 elements as shown in figure 12.
All of the nodes in this model are constrained in the circumferential direction; in addition, the
nodes along the diameter are also constrained in the radial direction. Figure 12 also gives the
material properties and dimensions of the sphere. The contact radius as a function of time is
compared for the numerical simulation and the analytical result{21] in figure 13.

The final example problem is that a rod striking a plate at 136,000 cm/sec and a 60°
obliquity. The projectile is modeled with 414 elements and the target with 5,300 elements. The

time duration of the simulation is 1.0 x 104 sec. The geometry and material properties are
described in table 3. The initial mesh is shown in figure 14. The final mass of the projectile is
42% of the initial mass and the exit velocity is 117,756.34 cn/sec in the x direction.

5. Conclusions

The major breakthrouth of this paper is the demonstration that a contact-impact algorithm
can be simplified dramatically by interpreting the gap g between the bodies as the gap between
spheres embedded in the elements. This simplifies the contact-impact algorithm and facilitates
vectorization. Computer times for large three-dimensional problems show a fivefold speedup in
the slideline algorithm and as much as a factor of two in total running time
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Table 1. Geometry and material properties of penetration problem 1.

Length

Width
Thickness
Radius
Density

Bulk Modulus
Shear Modulus
Plastic Modulus
Yield Stress
Ultimate Stress
Inital Velocity

wi 11
4.900 in.

Targetiplate)
3.950 in.

- 7.900 in.(half plate is modeled)

0.500 in.

8.31e-3 Ib-sec2 / in.4
2.0739¢+7 psi
6.3800e+6 psi
1.5000e+5 psi
2.0300e+4 psi
6.5300e+4 psi

5.5566e+4 in./ sec.(x-component)
-5.5566e+4 in./ sec (z-component)

Table 2. Timing studies for penetration problems.

Algorithm

Previous method
Pinball algorithm

Table 3. Geometry and material properties of penetration problem 4

Length
With
Thickness
Radius
Density

Young's Modulus

Yield Stress
Ultimate stress
Failure stress
Failure Strain
Initial Velocity

Example 1
34.7 sec. 94.4 sec.
22.0 sec. '0.4 sec.

Projectile(rod with a round nose)
10.25 cm

0.51cm
7.77e-3 kgm/cm3
2.07e+7 N/cm?
1.38e+5 N/cm?

20
117756.34 cm/sec.( x-component)
-68015.79cm/sec ( y-component)

0.375 in.
7.34e-3 Ib-sec? / in4
2.4200e+7 psi
9.3000e+6 psi
1.4300e+5 psi
1.6000e+5 psi
2.0300e+5 psi
0.0

Example 2, mesh 1 Example 2. mesh 2

302.2 sec.
143.0 sec.

Target(plate)
20.00cm

10.00cm
2.53cm
7.77e-3 kgm/cm3
2.07e+7 N/cm?
9.13e+4 N/cm?
1.12e+5 N/cm?
3.65e+4 N/cm?
2.5
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Fig. 1. a) Impact of one element with two other elements; Fig. 2. Interpenetration of
b) movement of element 1 due to impact with element 2; two pinballs.
¢) movement of element 1 due to impact with element 3.




. If this is the first step, use the element volume to calculate a radius for all
elements on the slideline.

. Calculate element normals for all elements. Elements with zero normals are

eliminated from consideration in the contact search.

. Calculate the center of all elements with non-zero normals.

4. Put elements into appropriate cells.

. Loop through elements of each cell to determine the penetrating pairs of
elements.

. Calculate the contact forces to be applied to the nodes of impacting element
pairs.

. Return to main driving routine.

Fig. 3. Pinball algorithm.

. Inidalizaton.

2. Calculate the external nodal forces.

. Compute the internal nodal force array.

a. Calculate the element stresses.

b. Compute the element nodal forces arising from the element stresses.

c. Assemble the element nodal forces to the intemal nodal force array.

. Call the slideline algorithm to calculate the contact forces and add them to the
external force array.

. Compute the nodal accelerations.

. Integrate the accelerations 0 obtain the nodal velocities and displacements.

. Goto 2.

Fig. 4. Explicit ime stepping procedure including slideline procedure.
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Fig. 5. One-dimensional impact problem.
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2 0.00
>

-0.50 T

-1.00 -

'1.50 T T 1

0.0 3.0 6.0 9.0 12.0

Time(sec.)

Fig. 6. Projection and penalty methods at midpoint of first rod.




0.00 -

Velocity

-0.50
-1.00

-1.50 , : :
0.0 3.0 6.0 9.0 12.0

Time(sec.)

Fig. 7. Projection and penalty methods at interface on first rod.

1.50

——— Projection
1.00 -= -~ Penalty
o= Analytical

0.50

Velocity
O
S
i

-0.50
-1.00

-1.50 1 T T
0.0 3.0 6.0 9.0 12.0

Time(sec.)

Fig. 8. Projection and penalty methods at midpoint of second rod.

11




ol

25, and 54 puseconds.

0,

.

times

Fig. 9. Example problem 1 at




CPU

100.0 +

75.0 +

50.0 +

25.0 +

Total

Element
Calculations

v -
& 1

A AR Y
LR
AR Y
LAWY

\‘\

Time
integration

LA
A

A A TAVATAY

LA AR NN NN
NN

N N \‘\‘\A\ >

L A N

TN
4

Ny v v v v v vy

N\

Slideline
calculations

100.0 —t—

Scalar Compiler

A,

49%

Fig. 10. CPU requirements of the Belytschko-Lin algorithm.
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Contact Radius (inches)

v, = 2.0 in/sec.

15

S /
< |
\J\\L
E = 1000 psi p = 0.01 Ibf-sec?/in*
v= 03 vo = 2.0 in/sec.
Radius = 5.01in
Fig. 12. Elastic impact of sphere with rigid wall.
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Fig. 13. Radius of contact.
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Fig. 14. The initial mesh of a rod striking a plate.
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